A Rao-Blackwellisation Approach to GDM-SLAM: Integrating SLAM and Gas Distribution Mapping (GDM)

نویسندگان

  • Achim J. Lilienthal
  • Amy Loutfi
  • José-Luis Blanco
  • Cipriano Galindo
  • Javier González
چکیده

In this paper we consider the problem of creating a two dimensional spatial representation of gas distribution with a mobile robot. In contrast to previous approaches to the problem of gas distribution mapping (GDM) we do not assume that the robot has perfect knowledge about its position. Instead we develop a probabilistic framework for simultaneous localisation and occupancy and gas distribution mapping (GDM-SLAM) that allows to account for the uncertainty about the robot’s position when computing the gas distribution map. Considering the peculiarities of gas sensing in real-world environments, we show which dependencies in the posterior over occupancy and gas distribution maps can be neglected under certain practical assumptions. We develop a Rao-Blackwellised particle filter formulation of the GDM-SLAM problem that allows to plug in any algorithm to compute a gas distribution map from a sequence of gas sensor measurements and a known trajectory. In this paper we use the Kernel Based Gas Distribution Mapping (KernelGDM) method. As a first step towards outdoor gas distribution mapping we present results obtained in a large, uncontrolled, partly open indoor environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments

Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...

متن کامل

Applying Conditional Particle Filters for Bearing-only Slam Problem

The recurrent algorithm for solving 2D Bearing-only SLAM problem is proposed. This algorithm is based on the Sequential Monte Carlo method and Rao-Blackwellisation technique, decomposing the state-vector into two parts which are the robot’s and the landmarks’ positions. The trajectories of the robot are modeled independently while the landmarks’ coordinates are modeled as conditional distributi...

متن کامل

New Adaptive UKF Algorithm to Improve the Accuracy of SLAM

SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...

متن کامل

Look-ahead Proposals for Robust Grid-based SLAM with Rao-Blackwellized Particle Filters

Simultaneous Localization and Mapping (SLAM) is one of the classical problems in mobile robotics. The task is to build a map of the environment using on-board sensors while at the same time localizing the robot relative to this map. Rao-Blackwellized particle filters have emerged as a powerful technique for solving the SLAM problem in a wide variety of environments. It is a well-known fact for ...

متن کامل

Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots

In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007